
Day 3

Version: 2019-12-27

Day 3: Encoders, Mapping, and Intro to the Bridge
of Death
Quantitative Engineering Analysis

Spring 2019

1 Schedule

• 0900-0915: Quiz

• 0915-0945: Debrief and Synthesis

• 0945-1030: Measured Paths

• 1030-1045: Coffee

• 1045-1215: Encoders in Action

• 1215-1230: Preview of the Overnight

2 Quiz [15 minutes]

For this quiz, consider the following parametric curve,

r(u) = a cos uı̂ + a sin u̂,

where u is a function of time t,

u = bt2,

and a and b are positive constants.

1. If your robot drives this curve, it will:

(a) Drive an ellipse at constant speed.

(b) Drive upward in a spiral.

(c) Drive in a circle at increasing speed.

(d) Spin in place.

(e) Do something not listed above.

2. The linear velocity dr
dt of the robot can be expressed using the chain

rule as:

(a) ∂r
∂a

∂a
∂t + ∂r

∂b
∂b
∂t

(b) ∂r
∂u

∂u
∂t

(c) ∂r
∂u

∂t
∂u

(d) None of the above.



Day 3

Version: 2019-12-27

3. What is the linear speed?

(a) 2bt

(b) 2abt

(c) ab

(d) None of the above.

4. What is the angular speed?

(a) 2bt

(b) 2ab

(c) 2at

(d) k̂

(e) None of the above.

3 Debrief and Synthesis [30 minutes]

Exercise (1) Briefly discuss the overnight with your table-mates, and make a
list of concepts you feel solid on, and concepts you feel shaky on.
Make a list of important definitions that you encountered in the
overnight.

Exercise (2) During class and in the overnight exercises we have been build-
ing capacity towards having the NEATO robot drive along a
curve. Of course there are lots of different ways to parameterize
a curve, each of which would correspond to different motion of
the NEATO. Let’s take a few minutes to review those concepts
here. With your table, please answer the following questions on
the board given a circle of radius R,

r(u) = R cos uı̂ + R sin u̂, u ∈ [0, 2π]

and the following parameterizations:

u(t) = αt

u(t) = αt2

u(t) = α(2 + sin(t))t

(a) Qualitatively describe the motion of the NEATO in each case.

(b) How long does it take to traverse the curve once? (Your answer
should depend on α)

(c) How would you find the linear velocity of a robot traveling
along the curve? What is the direction of this velocity? (It
would be really great if you employed the chain rule here and
kept your work as general as possible.)



Day 3

Version: 2019-12-27

(d) How would you find the angular velocity? What is the direc-
tion of the angular velocity? (It would be really great if you
employed the chain rule here and kept your work as general as
possible.)

(e) Having found the linear and angular velocity, how would you
find the left and right wheel speeds for the differential drive?

(f) The robot has a maximum wheel speed of 0.3 m/s. How would
you choose α to ensure your robot never exceeds this speed
limit?

4 Measured Paths [45 minutes]

One potential source of error that you may have identified in the in
class and overnight exercises is that your robot is not able to instan-
taneously achieve a desired VL and VR when you send it a particular
motor command. Given the pesky laws of physics, instead, the robot
needs to accelerate to the desired velocity. In order to get a more
accurate picture of what the robot actually did, we can use measure-
ments of the wheel velocities to give us a more accurate estimate
of the robot’s actual path in the world. Our Neato is outfitted with
sensors called wheel encoders, which provide accurate estimates of
the linear travel of each wheel over time. Knowing the linear travel
and the time between measurements, the velocity of each wheel can
be calculated. Next, you’ll be determining formulas to update the
robot’s position and heading given measured values of VL and VR.

Exercise (3) Suppose that at time t your robot is at position r(t), with a head-
ing of θ(t). Let’s further assume that at t = 0 the robot is station-
ary and pointing along θ = 0, which corresponds to the robot
facing along the positive x-axis of the room.

(a) Draw a picture on the board to make sure that you are clear as
to the definition of the coordinate system.

(b) Sketch a (fairly smooth) potential trajectory that your robot will
be driving. Choose several points along the curve seperated by
∆t. Sketch in the unit tangent and unit normal vector at each
point.

(c) Sketch an estimated plot of your robot’s linear and angular
speeds as a function of time as it traverses your curve.

(d) Sketch an estimated plot of your robot’s tangential and normal
components of acceleration as a function of time as it traverses
your curve.

(e) On the board, sketch a qualitative version of your estimate of
right and left wheel velocity as a function of time.



Day 3

Version: 2019-12-27

For a discretized path (expressed in terms of short time increments
rather than continuously) you can, assuming that the time-step
∆t is small, approximate a path by a series of movements in r and
movements about the center of the robot in θ. The velocity of the
robot is

dr
dt

= vT̂

dθ

dt
= ω

where v is the linear speed, ω is the angular velocity in the k̂ di-
rection, and since the robot is always oriented along the path we
can define T̂ in relation to the global (classroom fixed) coordinate
system as

T̂ = cos θî + sin θĵ

(f) Given measured values for VL and VR determine the values
of r(t + ∆t), and θ(t + ∆t) which represent the position and
heading of your robot at time t + ∆t.

5 Coffee Break [15 minutes]

6 Encoders in Action [90 minutes]

Next, you will complete a series of simple experiments with the
NEATO, similar to those conducted at the end of Monday’s class,
while simultaneously collecting motion data. In order to do this, we
have provided you a nice little script written by Paul Ruvolo (edited
by Jeff Dusek) which you can use to collect the wheel position en-
coder data while you are running your experiment (which you can
easily convert to velocities by taking the difference between two adja-
cent positions and dividing it by the timestep). The Matlab function
diff will likely be useful in this process. Note that the robot’s initial
position is arbitrary.

The script for collecting encoder data is called collectDataset.m
and is linked here and to the Canvas assignment. It is also available
from the sample code page. To collect encoder data, run the function
collectDataset(’filename.mat’) from your command window. This will
bring up a new figure window with the title “Dataset Collection
Window”. To start data collection , hit the space bar while focusing
on the figure window. You will see the message “Starting Dataset
Collection” in your command window if everything is working as
intended. You can then run your personal script to control the robot,
and encoder data will be collected in the background. When your

https://drive.google.com/file/d/0B0UHkPLHsgyoTDdPdEd2eXBuU28/view?usp=sharing


Day 3

Version: 2019-12-27

robot motion has concluded, re-focus on the “Dataset Collection
Window”, and hit the space bar to stop data collection. You will
see the message “Stopping Dataset Collection” in your command
window.

After you stop the data collection, you will have a file filename.mat
in your current directory. If you load this file, you will find a matrix
“dataset” that contains the encoder and accelerometer data recorded
from the robot. For this exercise and the upcoming challenge you
only care about the encoder data in columns 2 and 3, and the time
stamps in column 1 (recall this data is linear travel of the wheel). The
form of the data is:

dataset = [time, Posle f t, Posright, AccelX, AccelY, AccelZ] (1)

Important: If you include a loop in your personal robot control
script, make sure to include a pause of the form pause(0.1) within
the loop. Otherwise, Matlab will try to execute that loop as fast as
possible and will prevent the data collection script from recording
encoder data.

Complete the following simple experiments. For each experi-
ment, record the encoder data for analysis using the collectDataset
function.

Exercise (4) Using the basic robot motion code from Monday’s class (copied
below), have the robot complete three complete counterclockwise
and three complete clockwise circles around the robot’s center (i.e
VR=-VL or the opposite). Collect and plot the left and right wheel
encoder data.

(a) Does the plot of the wheel linear travel look as you would ex-
pect?

(b) Find the linear and angular velocity at for each time step and
plot them. Do they match your expectations?

pub = rospublisher(’/raw_vel’);

msg = rosmessage(pub);

msg.Data = [V_R, V_L];

send(pub, msg);

prompt = ’Press Enter to Stop Robot’;

str = input(prompt,’s’);

if isempty(str)

msg.Data=[0,0];

send(pub,msg)

end



Day 3

Version: 2019-12-27

Exercise (5) Using the driveforward.m function introduced in the overnight,
conduct three experiments where the robot drives a specified
distance at increasing speeds. Collect and plot the encoder data.

(a) Does the linear distance traveled collected by the encoders
match the distance input to the function?

(b) If the values do not match, why not?

(c) Plot the linear and angular velocity as a function of time. Do
they match your expectations?

Exercise (6) Calculate the left and right wheel velocities needed to drive a
circle of radius 0.5m in 20s. Use the code from Monday’s class
(above) to drive the circle while simultaneously collecting the
wheel encoder data.

(a) Plot the anticipated trajectory of your robot in Matlab. You may
want to use the Matlab command axis EQUAL to make sure
your circle looks nice and circular.

(b) In the same figure, plot the actual trajectory of your robot. How
closely do they match?

(c) Quantifying error is an important part of any experiment. For
the circular path, how would you calculate error between the
anticipated trajectory and the actual path of the robot? Are you
interested in total accumulated error? Average error and each
time step? Distance away from the “ideal” curve at each time
stop (e.g. are you stying within a lane)? Does something else
make sense? On the whiteboard draw sketches of what each of
these types of error would represent visually, and come up with
mathematical expressions.

6.1 Extension: Encoders in Real-Time

You can also read the robot’s wheel positions real-time from the
/encoders ROS topic and use this to plot the robot’s motion real-time
as it moves through the exercise...or even to correct for motion errors
to bring it back closer to the desired path!

Exercise (7) Modify the driveforward.m function to use encoder feedback
instead of time to determine when to stop the robot.

Exercise (8) Try writing a function that commands the NEATO to drive a
square with the side length as an input variable. Think about us-
ing the encoder feedback to determine when to turn, and whether
the robot has turned 90 degrees. The ‘/cmd_vel’ Ros topic might be
a good option here because it takes the linear and angular velocity
as inputs. If the square is too easy, how about driving a star?

https://drive.google.com/file/d/1sq7yFwfhzcaJakDrcUYzD9HJHjxzhBs8/view?usp=sharing
https://drive.google.com/file/d/1sq7yFwfhzcaJakDrcUYzD9HJHjxzhBs8/view?usp=sharing


Day 3

Version: 2019-12-27

Exercise (9) Feedback from the encoders can be used to correct the robot’s
position if it strays from the planned trajectory. Think about how
you could calculate error between the anticipated and actual path,
and what actions would need to be takent to reduce that error.

7 Preview of the Overnight [15 minutes]

Introduction to the Bridge of Death challenge.


